- 工业滤水器系列
- 精密过滤器,精密激光打孔过滤器
- 篮式过滤器,快开盲板过滤器
- 立式除污器|卧式直通除污器
- 工业滤水器,电动过滤器
- 电动过滤器,全自动滤水器
- 除氧器系列
- 真空除氧器,真空除氧装置
- 旋膜式除氧器|热力除氧器
- 常温式除氧器,过滤式除氧器
- 海绵铁除氧器,全自动海绵铁除氧器
- 除氧器蒸汽回收装置
- 三位一体真空电化学除氧器
- 解析除氧器(不锈钢)
- 大气式喷雾除氧器
- 胶球清洗系列
- 胶球清洗装置,收球网
- 凝汽器清洁专用胶球
- 胶球清洗装置,二次滤网
- 胶球清洗系统,凝汽器管道清洗
- 胶球清洗装置,胶球泵
- 中央空调清洗装置,胶球清洗系统
- 胶球清洗装置,分汇器
- 凝汽器胶球清洗装置
- 冷凝器自动在线胶球清洗装置
- 胶球清洗,装球室
- 锅炉消声器系列
- 柴油发电机消音器,柴油机排气消声
- 不锈钢小孔消音器,小孔喷注消声器
- 真空泵排气消音器,真空泵消声器
- 吹管消音器,锅炉吹扫消音器
- 风机消音器,锅炉风机消声器
- 锅炉消声器|蒸汽消声器
- 锅炉排气消音器,安全阀消音器
- 加药装置系列
- 锅炉加药装置|磷酸盐加药装置
- 汽液两相流疏水器
- 汽液两相流液位控制器|疏水器
- 高加蒸汽自动疏水阀
- 汽液两相流疏水器
- 射水抽气器系列
- 射水抽气器|多通道射水抽气器
- 射水抽气器逆止阀
- 冷油器系列
- 管式冷油器说明及技术改造
- 冷油器,油冷却器
- 真空滤油机
- 真空滤油机,双级真空滤油机
- 流体装卸鹤管设备
- 汽车鹤管
- 火车鹤管
- 底部鹤管
- 顶部鹤管
- 液化气(装卸车鹤管)
- AL2543液氨鹤管
- 鹤管生产现场
- 液体装卸低温鹤管
- 陆用流体装卸鹤管
- 锅炉取样器
- 飞灰取样器
- 煤粉取样器
- 取样冷却器
锅炉消音器|锅炉消声器安装用途
锅炉消音器|锅炉消声器压力温度材质
蒸汽消音器|蒸汽消声器厂家
蒸汽消音器|蒸汽消声器结构特点
蒸汽消音器|蒸汽消声器工作原理
安全阀消音器|安全阀消声器厂家
风机消音器|风机消声器安装用途
柴油机消音器|柴油机消声器结构特点
柴油机消音器|柴油机消声器工作原理
真空泵消音器|真空泵消声器压力温度材质
管道消音器|管道消声器厂家安装用途
管道消音器|管道消声器压力温度材质
小孔消音器|小孔消声器结构特点
小孔消音器|小孔消声器工作原理
排气消音器|排气消声器厂家安装用途
排气消音器|排气消声器工作原理
放散消音器|放散消声器安装用途
放散消音器|放散消声器结构特点
吹管消音器|吹管消声器工作原理
吹管消音器|吹管消声器压力温度材质
旋膜式除氧器厂家工作原理安装用途结构特点
真空除氧器厂家工作原理安装用途结构特点
热力除氧器厂家工作原理安装用途结构特点
三位一体真空电化学除氧器工作原理
解析除氧器厂家工作原理安装用途结构特点
全自动滤水器厂家工作原理安装用途结构特点
电动滤水器厂家工作原理安装用途结构特点
手动滤水器厂家工作原理安装用途结构特点
工业滤水器厂家工作原理安装用途结构特点
反冲洗滤水器厂家工作原理安装用途结构特点
二次滤网厂家工作原理安装用途结构特点
全自动除污器厂家工作原理安装用途结构特点
电动排污过滤器安装用途结构特点
胶球清洗装置厂家工作原理安装用途结构特点
凝汽器胶球清洗装置工作原理安装用途
冷凝器自动在线清洗装置厂家结构特点
海绵胶球厂家使用用途 剥皮胶球使用特点
金刚砂胶球清洗原理 胶球泵厂家型号选择
取样冷却器厂家工作原理安装用途结构特点
煤粉取样器厂家工作原理安装用途结构特点
飞灰取样器厂家工作原理安装用途结构特点
列管式冷油器厂家工作原理安装用途结构特点
射水抽气器厂家工作原理安装用途结构特点
汽液两相流疏水器厂家工作原理安装用途结构特点
风电波动对电网影响规律剖析
1、风电场输出功率具有波动性、间歇性,为确保电网稳定、安全运行,电网需要留有足够的旋转备用来完成系统对波动能源的调节。电网可接纳风电容量主要取决于区域电网所具备的调峰、调频能力,考虑到风力发电输出功率的变化速率较快,区域电网的AGC调节速率就显得尤为重要。我国的电网结构中,火力发电占据发电容量的份额最大,但火电机组调节速率较慢,不能有效得对风电进行快速调节。与之相比,水电机组具有容量大,调节速率快的特点,但在电网中所占容量较小并且分布不平均,并且其建设和运行都受到了自然客观条件的限制,以上原因导致了我国各地电网的接入风力发电的能力不尽相同,换言之,风电波动对不同的电网结构带来的影响也不尽相同。风电波动对电网带来的影响主要受三方面的因素制约:风电场输出功率的特性,地区电网的实际情况以及储能补偿设备的特性。
2、典型电网调频能力分析
选取湖北、上海、吉林等我国几个负荷较大、电网调节能力较强的省区电网为案例,进行了研究。湖北省电网的大致情况为:全省AGC机组总可调容量1325MW 中,水电机组AGC可调容量为235MW,占17.7%,平均调节速率达21MW/min;火电机组AGC可调容量为1090MW,占82.3%,平均AGC调节速率仅为5.3MW/min。因此总共的调节能力为26.3MW/min。自动滤水器。
上海地区电网的大致情况为:目前上海电网实际的AGC调节速率仅仅为额定调节速率的1/3左右,即大调频能力为50~60MW/min。因此,就目前上海电网的调频能力而言,在夏季高峰时约有10MW/min的AGC调节裕度,这两个地区都是位于我国的中东部的经济较为发达的地区,对能源有着巨大的需求,并且电网的容量较大,调节能力强。
吉林省电网的大致情况为:截至2008年底,吉林省内网省调总装机容量为13034MW,其中东北网调直调水电3238MW 。吉林省直调大部分为火电机组,总容量9796MW,其中火电机组7873MW;水电机组仅为285.7MW,风电机组764.3MW,生物发电机组42MW。
3、大规模风电接入电网带来的问题
3.1电力电量平衡问题
由于风电的不确定性和不可控性,导致电网并网的风电机组的电力供电无法满足稳定性、连续性和可调性等要求,输出功率的不断变化容易对电网造成冲击。由于风电的不可预知性,调度运行人员无法对风力发电做出有效的发电计划,进而导致系统备用电源、调峰容量和系统运行成本增加以及威胁系统安全稳定运行等一系列后果。
解决风电并网对电力调配带来的困难,迫切需要研制开发一套有效的风力发电预报系统。
3.2调峰问题
为保证电网的安全稳定运行,在电网低负荷时,仍需保证一定的机组运行。一般燃煤机组的低出力约为额定出力的40%,电网现有的控制模式要求在不调停大机组、电网在低负荷、风电机组出力大的极端情况下,电网内燃煤机组的低出力加上外来电的总和应小于低负荷[2]。由于风电的反调峰特性,冬季夜间低负荷、大风时段,风电出力快速增加。尤其在北方,冬季70%以上的火电机组承担供热任务,调峰能力降低,调峰容量不足。同时,风电出力变化速度较快,火电机组常规调峰无法跟上风电出力的快速变化,这将导致联络线交换功率超过允许的偏差,越过联络线上的功率限制。